A chronology of pi

Pre computer calculations of π

Mathematician Date Places Comments Notes

1 Rhind papyrus 2000 BC 1 3.16045 (= 4(8/9)2)
Click for note 1
2 Archimedes 250 BC 3 3.1418 (average of the bounds)
Click for note 2
3 Vitruvius 20 BC 1 3.125 (= 25/8)
Click for note 3
4 Chang Hong 130 1 3.1622 (= √10)
Click for note 4
5 Ptolemy 150 3 3.14166
Click for note 5
6 Wang Fan 250 1 3.155555 (= 142/45)
Click for note 6
7 Liu Hui 263 5 3.14159
Click for note 7
8, Zu Chongzhi 480 7 3.141592920 (= 355/113)
Click for note 8
9 Aryabhata 499 4 3.1416 (= 62832/2000)
Click for note 9
10 Brahmagupta 640 1 3.1622 (= √10)
Click for note 10
11 Al-Khwarizmi 800 4 3.1416
Click for note 11
12 Fibonacci 1220 3 3.141818
Click for note 12
13 Madhava 1400 11 3.14159265359
Click for note 13
14 Al-Kashi 1430 14 3.14159265358979
Click for note 14
15 Otho 1573 6 3.1415929
Click for note 15
16 Viète 1593 9 3.1415926536
Click for note 16
17 Romanus 1593 15 3.141592653589793
Click for note 17
18 Van Ceulen 1596 20 3.14159265358979323846
Click for note 18
19 Van Ceulen 1596 35 3.1415926535897932384626433832795029
Click for note 19
20 Newton 1665 16 3.1415926535897932
Click for note 20
21 Sharp 1699 71
Click for note 21
22 Seki Kowa 1700 10
23 Kamata 1730 25
24 Machin 1706 100
Click for note 24
25 De Lagny 1719 127 Only 112 correct
Click for note 25
26 Takebe 1723 41
Click for note 26
27 Matsunaga 1739 50
Click for note 27
28 von Vega 1794 140 Only 136 correct
Click for note 28
29 Rutherford 1824 208 Only 152 correct
Click for note 29
30 Strassnitzky, Dase 1844 200
Click for note 30
31 Clausen 1847 248
Click for note 31
32 Lehmann 1853 261
Click for note 32
33 Rutherford 1853 440
Click for note 33
34 Shanks 1874 707 Only 527 correct
Click for note 34
35 Ferguson 1946 620
Click for note 35

General Remarks:
A. In early work it was not known that the ratio of the area of a circle to the square of its radius and the ratio of the circumference to the diameter are the same. Some early texts use different approximations for these two "different" constants. For example, in the Indian text the Sulba Sutras the ratio for the area is given as 3.088 while the ratio for the circumference is given as 3.2.

B. Euclid gives in the Elements XII Proposition 2:

Circles are to one another as the squares on their diameters.

He makes no attempt to calculate the ratio.

Computer calculations of π

Mathematician Date Places Type of computer

Ferguson Jan 1947 710 Desk calculator
Ferguson, Wrench Sept 1947 808 Desk calculator
Smith, Wrench 1949 1120 Desk calculator
Reitwiesner et al. 1949 2037 ENIAC
Nicholson, Jeenel 1954 3092 NORAC
Felton 1957 7480 PEGASUS
Genuys Jan 1958 10000 IBM 704
Felton May 1958 10021 PEGASUS
Guilloud 1959 16167 IBM 704
Shanks, Wrench 1961 100265 IBM 7090
Guilloud, Filliatre 1966 250000 IBM 7030
Guilloud, Dichampt 1967 500000 CDC 6600
Guilloud, Bouyer 1973 1001250 CDC 7600
Miyoshi, Kanada 1981 2000036 FACOM M-200
Guilloud 1982 2000050
Tamura 1982 2097144 MELCOM 900II
Tamura, Kanada 1982 4194288 HITACHI M-280H
Tamura, Kanada 1982 8388576 HITACHI M-280H
Kanada, Yoshino, Tamura 1982 16777206 HITACHI M-280H
Ushiro, Kanada Oct 1983 10013395 HITACHI S-810/20
Gosper Oct 1985 17526200 SYMBOLICS 3670
Bailey Jan 1986 29360111 CRAY-2
Kanada, Tamura Sept 1986 33554414 HITACHI S-810/20
Kanada, Tamura Oct 1986 67108839 HITACHI S-810/20
Kanada, Tamura, Kubo Jan 1987 134217700 NEC SX-2
Kanada, Tamura Jan 1988 201326551 HITACHI S-820/80
Chudnovskys May 1989 480000000
Chudnovskys June 1989 525229270
Kanada, Tamura July 1989 536870898
Chudnovskys Aug 1989 1011196691
Kanada, Tamura Nov 1989 1073741799
Chudnovskys Aug 1991 2260000000
Chudnovskys May 1994 4044000000
Kanada, Tamura June 1995 3221225466
Kanada Aug 1995 4294967286
Kanada Oct 1995 6442450938
Kanada, Takahashi Aug 1997 51539600000 HITACHI SR2201
Kanada, Takahashi Sept 1999 206158430000 HITACHI SR8000

General Remarks:

A. Calculating π to many decimal places was used as a test for new computers in the early days.

B. There is an algorithm by Bailey, Borwein and Plouffe, published in 1996, which allows the nth hexadecimal digit of π to be computed without the preceeding n- 1 digits.

C. Plouffe discovered a new algorithm to compute the nth digit of π in any base in 1997.

Reference (One book/article)

Other Web sites:

  1. Astroseti (A Spanish translation of this article)
  2. Simon Fraser University (Tables of Computations)

Related Posts by Categories



0 comments:

Engineering News

Central Board of Secondary Education

Architecture News

Management News

Medical News

Journalism News

ss_blog_claim=39d0fbd9150037431cf33bbbf3c7c7ce